(Agnieszka Widz)

Given a family of real functions \mathcal{F} we say that a set $M \subseteq \mathbb{R}$ is magic for \mathcal{F} if

$$
\forall_{f, g \in \mathcal{F}} f[M] \subseteq g[M] \Rightarrow f=g
$$

This notion was introduced by Diamond, Pomerance and Rubel in 1981 [1]. Recently some results about magic sets were proved by Halbeisen, Lischka and Schumacher [2]. Inspired by their work I constructed two families of magic sets one of them being almost disjoint and the other one being independent. During my talk I will discuss those results and sketch some of the proofs.

References

[1] H. G. Diamond, C. Pomerance, L. Rubel, Sets on which an entire function is determined by its range, Mathematische Zeitschrift, 176 (1981), 383-398.
[2] L. Halbeisen, M. Lischka, S. Schumacher, Magic Sets, Real Anal. Exchange, 43 (2018), 187 204.

